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ABSTRACT. We study the behavior of spectral viscosity approximations to non- 
linear scalar conservation laws. We show how the spectral viscosity method 
compromises between the total-variation bounded viscosity approximations- 
which are restricted to first-order accuracy-and the spectrally accurate, yet 
unstable, Fourier method. In particular, we prove that the spectral viscosity 
method is L1 -stable and hence total-variation bounded. Moreover, the spectral 
viscosity solutions are shown to be Lip'-stable, in agreement with Oleinik's 
E-entropy condition. This essentially nonoscillatory behavior of the spectral 
viscosity method implies convergence to the exact entropy solution, and we 
provide convergence rate estimates of both global and local types. 

1. THE SPECTRAL VISCOSITY APPROXIMATION 

We are concerned here with spectral approximations of the scalar conserva- 
tion law 

(I1. I a) 
a 

tu(x, t) + a f (u(x, t)) = O, u(x, 0) =_ uo(x) E B V. at ax 
To single out a unique physically relevant weak solution, (1.1 a) is complemented 
with an entropy condition such that for all convex U's (e.g., [7, 12]) 

(I.lb) ,U(u) + ,-F(u) < 0, F(u) J U'(4)f'(4)dX. 

We want to solve the 27t-periodic initial value problem (1.1 a)-( 1. lb) by spec- 
tral methods. To this end, we use an N-trigonometric polynomial, UN(X, t) = 

Ek= _N k(t)eikx, to approximate the spectral (or pseudospectral) projection 
of the exact entropy solution, PNU. Starting with UN(X, 0) = PNuo(x), the 
standard Fourier method reads, e.g., [5, 2, 1], 

(1.2) a-UN + a9PNf(uN) = 0- 

Together with one's favorite ODE solver, (1.2) gives a fully discrete spectral 
method for the approximate solution of (1.1 a). 
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Although the spectral method (1.2) is a spectrally accurate approximation of 
the conservation law ( 1. la), in the sense that its local error does not exceed 

(1.3) |(I- PN)f(UN(., t))IIH-s < Const* NSIIUNIIL2, VS > 0, 

the spectral solution, UN(X, t), need not approximate the corresponding en- 
tropy solution, u(x, t) . Indeed, counterexamples provided in [13, 14] show that 
the spectral approximation (1.2) lacks entropy dissipation, which is inconsistent 
with the entropy condition (1.1b). Consequently, the spectral approximation 
(1.2) supports spurious Gibbs oscillations which prevent strong convergence to 
the exact solution of (1.1). 

To suppress these oscillations, without sacrificing the overall spectral accu- 
racy, we consider instead the Spectral Viscosity (SV) approximation 

(1.4) ,9UN(X, t) + a-PNf(uN(x, t N) = 0Na QN * a UN(X, t) 

The left-hand side of (1.4) is the standard spectral approximation of (1.1 a). On 
the right-hand side, it is augmented by spectral viscosity which consists of the 
following three ingredients: a vanishing viscosity amplitude of size EN t 0, a 
viscosity-free spectrum of size mN >> 1, and a viscosity kernel, QN(X, t) = 

Jkl=mN Qk(t)eikx, activated only on high wave numbers lkl > MN, which can 
be conveniently implemented in the Fourier space as 

N 

CN0QN * a-UN(X, t) --N Z k2Qk(t)i4(t)e 
Jkl=mN 

We deal with real viscosity kernels QN(X, t) with increasing Fourier coeffi- 
cients, Qk Qjkj, which satisfy 

(1 5)q 1- ( )MN ?Qk(t) , kl > mN, forsomefixedq > 1, 

and we let the spectral viscosity parameters, (CN, mN ), lie in the range 

(1.6)q eN " NtNlogN MN " NTq, f < 1. 

We remark that this choice of spectral viscosity parameters is small enough 
to retain the formal spectral accuracy of the overall approximation, since 

(1.7) CN0-QN * -UN(', t) < Const N- O'iuN(', t)1IL2, Vs > 2. 
ax ax ~~H-s 

At the same time, it is sufficiently large to enforce the correct amount of entropy 
dissipation that is missing otherwise, when either EN = 0 or MN = N. Indeed, 
it was shown in [13]-[15], [8] that the SV approximation (1.4)-(1.6)q has a 
bounded entropy production in the sense that 

a ~~~2 
(1.8) 9~N -UN(X, t) < Const 

( 1.8) IIOAx L2 (X,t) 

and this together with an L??-bound imply-by compensated compactness argu- 
ments-that the SV approximation UN converges to the unique entropy solution 
of (1.1). 
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Observe that in the limit case q = oo, the SV method (1.4), (1.5)o-(1.6)o, 
coincides with the usual viscosity approximation, ,9 u(x, t) + ,9 PNf(ue(x, t)) 

=N e,Xl U(x, t) . But of course, the spectral accuracy (1.7) is lost in this limit 
case. 

In this paper we show that the SV method (1.4)-(1.6)q, while maintaining 
the spectral accuracy (1.7), also shares the essentially nonoscillatory behavior 
of standard viscosity approximations. In particular, in ?3 we show that the SV 
solution is total-variation bounded. Moreover, in the genuinely nonlinear case, 
f" > 0, the SV solution is Lip+-stable, in agreement with Oleinik's E-condition. 
We conclude that the SV approximation converges to the exact entropy solution 
of (1. 1), and we provide various error estimates. 

2. A TOTAL-VARIATION BOUND 

The presence of spectral viscosity on the right of (1.4) is responsible for a 
rapid decay of the Fourier coefficients located toward the end of the computed 
spectrum. This spectral decay result was proved in [8] for the special case of 
Burgers' equation, f(u) = I U2, following the argument of [4]. The general 
case was analyzed by S. Schochet, [11], where it was shown that the following 
spectral decay estimate holds [11, Theorem 1]: 

||(I - Pk)f(UN(., t))jI 

K (k ) [N-s(1-6) + k-re --NN2]N Vk > N, o < t < T. 

Here, r and s are related to the smoothness of the data-the initial data 
UN(', 0) and the flux f(.): r > 0 is related to the smoothness of the initial 
data, u0-the initial smoothness being measured by the requirement that 

max kr 1 (I -Pk)UN(., O) 11 < Const; 
k<N 

and s is any sufficiently large integer, s > so (r), which is related to the degree 
of smoothness of f(.) measured by the constants Ks-constants which may 
depend on If IIcs (as well as IIUNIILOO and 0 ), but otherwise are independent 
of N. 

The last estimate shows that the discretization error as well as its spatial 
derivatives, Oxp (I - PN)f(UN(., t)), become spectrally small independently of 
whether the underlying entropy solution is smooth or not. Indeed, using the 
dyadic decomposition Oxp(I - PN)f(UN) = E=o0xP2J+1N(I - P2JN)f(UN) and 
applying the above estimate with k = 2jN, j = 0, 1, ..., we obtain (consult 
[11, (4.9)]) 

(2.1 )p ||a 
p (I -PN) f (UN( t))| 
< Ks * [N-s(1-6)+P + N-r+Pe -N2-0t] Vs > sO. 

Remark. As noted in [11, ?3], the above smoothness requirements are by no 
means optimal. For the sake of technical convenience, we therefore assume 
throughout the rest of the paper that the flux, f (.), is sufficiently smooth (e.g., 
Ks < oo for s large enough so that the first term on the right in (2. I)p is 
negligible for, say, s(1 - 0) > 2). Observe that then the spatial derivatives 
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of the truncation error are spectrally small, provided the initial data UN(', 0) 
are sufficiently smooth so that the second term on the right of (2.1)p applies 
with r > p (otherwise, an initial layer of size < I may be formed, which is 
smoothed out exponentially fast once the spectral viscosity becomes effective). 

We conclude that the SV approximation is governed by the viscosity-like 
equation 

(2.2) aUN(X, t) + 
a 

f(UN(X, t)) = 8N aQN* a UN(X, t)+.. 

where the missing term ... on the right refers to the spectrally small discretiza- 
tion error (2. 1)i . 

Equation (2.2) is similar to the usual viscosity approximation 

(2.3) aU8e(x, t) + 
a 

f(u(x, t)) = C &2Ue(X, t). 

(In fact, the SV method (1.4)-(1.6)q coincides with the viscosity equation (2.3) 
in the limit case q = oo.) To quantify this similarity, we rewrite (2.2) in the 
equivalent form 

a-UN(X, t) + a f(UN(X, t)) Ot Ox 

(2.4a) 0 5-X2 UN(X, t)0- N RN(X, t) * aUN(X, t) -CN02UNX,LJ-CNOx O 

+ 
a 

(I -PN)(UN), 

where 
N llkl <inN, 

(2.4b) RN(X, t) = E Rk(t)e,kx Rk(t) { 1 Qt N. 

k=-N IQ() k N 

Apart from the spectrally small truncation error on the right, the SV approxi- 
mation (2.4a) differs from (2.3) by the additional term involving the 'residual 
kernel', RN(X, t), on its right-hand side. We claim that this kernel is 'suffi- 
ciently small'. 

Lemma 2.1. Consider the SV kernel QN(X, t) subject to the SV parameteri- 
zation (l.5)q-(l.6)q. Then RN(X, t) _= DN(X) - QN(X, t) satisfies 

(2.5)s a| X2SRN(, t) < Const m2slogN, 0 < s < q. 

Remark. The inequality (2.5)1 followed by (1.6)q imply the bound 

N IIOxRN(., t)IILI < Const, 

which plays an essential role in our foregoing discussion. In practice it was 
found that the latter bound is minimized if we let the monotonically increas- 
ing (respectively decreasing) SV coefficients, Qk (respectively Rk ), to depend 
smoothly on the relative wave number .k 

Proof of Lemma 2.1. We first recall 
[8, Lemma A. 1]: For any symmetric N-trigonometric polynomial, 
WN(X) = k-=Okcos kx, with monotonically decreasing coefficients, 
O?< tWk < 1 there holds 
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(2.6) IIWN(X)IILI < Const * log N. 

N 

(Consideration of the Dirichlet kernel, DN(X)=_ 2 E leikx , shows that 
k=O 

the last estimate is sharp.) 

Consider now the symmetric N-trigonometric polynomial 

1 a02s N k2s 
m25 x2sRN(X, t) = 2 2 RkCOkx, s < q. 

MNx k=O mN 

According to the SV parameterization in (1 .5)q , it has monotonically decreasing 

Fourier coefficients which satisfy (for s < q) k24Rk = [1 - Qk] < 1 . By 
mN mN 

(2.6), the LI-norm of such polynomial does not exceed Const * log N, and (2.5)s 
follows, for 

a2s N k 2s 

OX2 RN(, t) =mN Z 2sRk(t)e 
L' =- N L' 

< Const * m2s log N, s < q. 

Equipped with Lemma 2.1, one can show now that the SV approximation 
(2.4)-like the viscosity approximation (2.3)-is LI-stable and total-variation 
bounded. The necessary estimate in this direction is included in the following 

Lemma 2.2 (LI-stability). Let UN and VN be two different solutions of the SV 
approximation (1.4). Then there exist constants CN N-(1I- ) such that the 

following estimate holds: 

IIUN(*, t) - VN( , t)1LI 

< eCNt [IIUN(., 0) - VN(., O)IIL' 
(2.7) 

+ x (I- PN)[f (UN) -f (VN)I L(X,[O,t])] 

Remark. Taking into account the truncation error spectral decay (2.1)1, then 
inequality (2.7) provides us with the announced LI-stability of the form 

||1UN(*, t) -VN(', t)11LI 

< eCNt [IIUN(, 0) - VN(*, O)IILI + Ks * (tN5s(1 6)+l + N-(r+l)+O) 

Proof of Lemma 2.2. The difference UN - VN satisfies 

a(UN - VN) + a 
(f(UN) 

- 
f(VN)) 

02 02RN * (UN-VN) 
+ x 2 (UN - VN) - xRN (uN 

+ a(I - PN)[f (UN) - f(VN)I. 
ax 
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One may proceed now with an L I-estimate in a standard fashion: we integrate 
against sgn(uN - VN), and in view of (2.5)i and (2.1) ), we obtain 

dt IUN(, t) - VN(., t)1LI 

02 
? 9N aX2 RN(', t) 1IUN(-, t) - VN(, t)I1LI 

+ 
a 

(I - PN)[f (UN) - f (VN)I 
ax L' 

? CN |IUN(., t) - VN(., t)|LI + Ks * (N-s(l-0)+l + N -r+le -N 2t), 

where according to (1.6)q one has CN -NMNmlogN N-('- I) . The asser- 
tion (2.7) now follows. El 

Application of Lemma 2.2 with VN(., t) = UN(. +AX, t) shows that the total 
variation of the SV solution, 

IIUN(, t)H1BV su 1 |UN(X + Ax, t) - UN(X , t)H|LI , 

does not exceed 

eCNt [1IUN(. O)H Bv+ |BV + 2(I-PN)f(UN) L[) 

In fact, if q > 1, then (1.6)q implies that CN N-('- 1) l 0, and together 
with the spectral decay estimate (2.1)2 we conclude 

Corollary 2.3 (Total-variation boundedness). The SV approximation (1.4)- 
(1.6)q with q > 1 is essentially nonoscillatory, in the sense that the increase 
of its initial total variation is o(1), 

(2.8) |IUN( , t)|BV ? (1 + &(N ( q') )) 
X [IUN(., O)IIBV + Ks * (tN-s(l-0)+2 + N-r+O)I. 

Remarks. 1. Corollary 2.3 tells us that the SV solution UN(', t) is total-variation 
bounded (independently of N), provided its initial data, UN(', 0), are. (Ob- 
serve that the BV-smoothness of UN(., 0) allows us to use (2.1 )p with r > 1 

-2' 
and hence the contribution of the truncation error, which is bounded from above 
by the second term on the right of (2.8), is negligible, at least for 0 < 2. For 

2 o < 1, however, one might need a slightly stronger assumption regarding 

the initial smoothness, e.g., UN(', 0) E W3 1; we shall not explore this issue 
here since, as noted above, the smoothness requirements for (2.1 )p to hold are 
not optimal to begin with.) 

To guarantee the BV-boundedness of UN(', 0) without sacrificing spectral 
accuracy, one can preprocess the exact initial data u0 prescribed in (1. 1 a). For 
example, de la Vall6e Poussin's filter, 

N 1 
lkl > N 

(2.9) UN (X,O ) =VPN uO Z k ikk(O) e,5 Urk=22k lk>N 
k=-N N2=y k>2 
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yields a spectrally accurate approximation of uo, 

||(I- VPN)UO01H-S < Const * N u2 |IUOIIL2, VS > 0; 

moreover, since IIVPNUOIIBV < 3HIUOIIBV it follows from Corollary 2.3 that the 
SV approximation (1.4)-(1.6)q, subject to the preprocessed initial data (2.9), 
is total-variation bounded (independently of N) for arbitrary BV-initial data 
UO. 

Finally, we note that such initial preprocessing might be necessary, since 
the unfiltered (pseudo-)spectral projection, IIPNUO IIBV may grow as much as 
&(log N) for arbitrary BV-initial data. Of course, it can be avoided if the 
initial data are smooth enough, say in H1, for then IIPNUOIIBV < IIUOIIHI < 00 . 

2. The BV-estimate (2.8) shows how the SV method maintains the delicate 
tradeoff between spectral accuracy and TV-stability: According to (2.8), the total 
variation of the SV solution (1.4)-(1.6)q with q = 1 may grow by a factor of 

(1) times its initial variation; as q increases, this growth factor approaches 
one-in agreement with the Total-Variation Diminishing (TVD) property of 
the exact solution, but at the same time, the spectral accuracy estimate (1.7) 
'deteriorates'. Thus, the SV method (1 .4)-(1 .6)q can be viewed as a compromise 
between the first-order TVD viscosity approximation (2.3) (which corresponds 
to q = oo ), and the spectrally accurate, yet unstable, Fourier approximation 
(1.2) (which corresponds to q = 0). 

Similarly, the LI-stability (2.7) approaches the LI-contraction of the ex- 
act entropy solution as we increase the amount of spectral viscosity by letting 
q t oo. 

3. The total-variation boundedness of the SV solution implies that (a sub- 
sequence of ) UN(X, t) converges strongly to a limit u(x, t), which is a weak 
solution of (1. la). To conclude that this limit is the unique entropy solution of 
(1.1), it remains to verify that u satisfies the entropy condition (1.1 b). To this 
end, we multiply (2.4a) by U'(UN), obtaining 

D 
a_ 

D 
aUN 

~ 
a__N 

aU(UN) + F(UN)= a NU (UN) A NU (UN) at aDx Dx Dx )a 
a (DUN D9 UN DUN 

+ AX INUNRN * AX - N AX RN * AX 

= I + II + 
a 

III + IV. 
ax Dx 

Since the entropy function U is convex, II < 0. This, together with the straight- 
forward estimates (based on (2.5)o, (2.8) and (3.3)0 below) 

IIIILI + 11IIIIILI < ENHIRNHILI 11 UNIL?? 11 UNIIBV < Const * EN log NII uO IIBV-+O, 

IIIVIILI <? NJIRN11L?JIUN 11BV < Const * .NmN log NII Uo 1 -B0, 

imply that U = lim UN satisfies the entropy inequality (1.1 b), and convergence 
of (the whole sequence of ) UN to the entropy solution follows. 

4. The total-variation bound indicated above implies the usual decay 

(2.10) 1Uk(t)1 
< IUN(, t)H1BV 
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which in turn implies, by the Parseval identity, an L2(x)-bounded entropy 
production estimate (uniformly in time) of the type indicated earlier in (1.8), 

- -UN(., t) < Const, 0 < t < T. N ax L2 (X) 

3. CONVERGENCE RATE ESTIMATES 

In this section we restrict our attention to the genuinely nonlinear conserva- 
tion law (1.1) where f" > a > O. 

We say that a family of approximate solutions {UN(X, t)} is Lip'-stable, if 
there exists a constant (independent of N), such that the following estimate is 
fulfilled1: 

(3.1) IIUN(, t)IlLip+ < ConStT, 0 < t < T. 

Recall that the viscosity approximation ue as well as the entropy solution of the 
nonlinear conservation law (1.1) with f" > a > 0 satisfy Oleinik's E-condition, 
e.g., [7, 15], 

(3.2) IIU8(*, t)1LiP+ < _________ t > 0. 
IIUOIILl> + alt 

In particular, they are Lip+-stable as long as their initial data uo are Lip+- 
bounded. We want to show that the SV approximation (1.4) is also Lip+-stable. 

We remark that the BV-bound (2.8) does not exclude the possibility of small 
high-frequency oscillations. (By conservation, Lip+- implies BV-stability, but 
not vice versa). Such 'unphysical' oscillations may violate the Lip+-stability of 
the SV solution. In order to prevent such Lip+-unstable oscillations, we there- 
fore need to slightly increase the amount of spectral viscosity. We achieve this 
(without sacrificing formal spectral accuracy) by requiring the spectral viscosity 
parameters to lie in the range (l.5)q-(l.6)q with q > 3 

As before, the Lip+-stability of the SV method hinges on the (small) size 
of the 'residual' kernel, RN(X, t), which distinguishes the SV approximation 
(2.4a) from the Lip+-stable viscosity approximation (2.3). To this end, we first 
state 

Lemma 3.1. Consider the SVkernel QN(X, t) subject to the SVparameterization 
(l.S)q-(1.6)q. Then RN(X, t) _ DN(X) - QN(X, t) satisfies 

(3.3)~ a2s1 
(3.3)s | | 2sRN(, t) < Const m2s+ IlogN, 0 < s < q- -. 

Proof. By (l.5)q , Rk -Qk < ( L )2qk The lemma follows from the straight- 
forward estimate 

a02s 
2 

q~+~ k2s7j~ 
Ox2SRN(, t) < jkj?N jR k J< <k MN| 

aX2s LOO lkl~~~~~~2s 1 

? Const * mN+ + Const * mff * N is<q- 2} N N log N if CoN i s 

?<Const. Am2sJI log N. Zl 

'We let II4ILip, 11IILip+ and 11X11Lip, denote respectively, esssup_+Y j(q(x) - O(y))/(x -Y)I, 
ess supx-y[(O(x) - 0(y))I(x - y)]+ and sup ,(O - qo, V')/II'IlLip - 
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Equipped with Lemma 3.1, we now turn to the Lip+-stability proof of the 
SV method, stating 

Lemma 3.2 (Lip+-stability). The SV approximation with q > 3 satisfies the 
Lip+-stability estimate 

(3.4)IIUN% t)IL + + ~ pT tanh(v aYCNt) 
(3.4) 11 UN(' 5 t) llLip+ < |IU 

= 

0)1- + t', AN01A/T R P 
IJUN(., O)HIip~+ + aINt VaCNt 

where the vanishingly small constants, CN, are given by 

CN N-0(10- 
3 ) . 11 UN(', O) IIBV + Ks * (N-s(1-0)+ + N 

Remark. The constants CN involved in the Lip+-bound (3.4) have two major 
contributions: the second term on the right represents an upper bound of the 
truncation error, which is spectrally small-provided the initial data UN(', 0) 
are sufficiently smooth, say UN(', 0) E W2 1 so that (3.4) holds with r> 3 
(otherwise, an initial layer may be formed, after which the spectral viscosity 
becomes effective and drives the truncation error spectrally small). Apart from 
this spectrally small contribution, we have CN N-0(1-2q) ; here we observe 
that, as before, when the amount of spectral viscosity increases with q, the 
Lip+-bound in (3.4) becomes tighter, in agreement with (3.2), and in particular, 
the two Lip+-bounds coincide in the fully viscous limit q = oo. 

ProofofLemma 3.2. Differentiation of (2.4a) yields, for WN(X, t) ,UN(X, t), 

yWN(X, t) + f (UN(X, t)) a WN(X, t) + f" (UN(X, t))WN(x, t) 

0a2 a2 02 
= CN 2WN(X, t) - aN 2 RN * WN(X, t) + x2' (- PN)f(UN), 

which implies that IIUN(, t) lLip+ = maxx[WN(X, t)+] satisfies the differential 
inequality 

dt2 
Wt-IUN(, t)HlLip+ + aJIUN(, t)HLip+ 

35 
< 9N|x2RN(@, t)| * UN(' 5 t) IIBV 6x2(I-PN)f(UN) 

IN + IIN- 

We recall that according to (3.3)1, 

02 
(3.6a) IN = CN Ox2RN(, t) |UN L- (BV [O tI) 

< Const * N(- 2q) . || UN||L??(BV,[O,t]); 
moreover, according to (2.1)2, together with Sobolev's inequality, we have 

(3.6b) "N = ax2 (I - PN)f(UN) < Ks . (Ns()+ Nr+ N eN t). 

Equipped with (3.6a)-(3.6b) we return to (3.5), obtaining 

dt IIUN(, t)lLip+ + OIlUN(,Li< CN5 CN-IN + IIN 1 0, 
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which in turn implies the desired Lip'-stability of UN, 

IIUN(., t)IILip+ < CNtanh((t) ||N t)+ Vri5CNj1UN(., O)IILip+ 
v- o V N 7oatanh(vF/Z7t)IIuN(., 0)IlLip+ 

1 + a AN tanh(vF.t) 
-IUN(N , 0)11iP+ + aNt a 

We now recall the main result of [9] (see also [16]), which deals with the 
convergence rate of Lip'-stable approximations. 

Theorem 3.3 [9]. Let {UN(X, t)} be a family of Lip'-stable approximate solu- 
tions of the conservation law (1.1), with Lip'-bounded initial data. Assume that 
{UN(X, t)} are Lip'-consistent of order c, 

(3.7) IIUN(X, 0) - UO(x)IlLip' + + 
UN(', t) + a f(UN(., t)) 

(3.7) at Ox ~~~~~~~~~~~~~~~~~~~Lip/ 
< ConstT * X, 0 < t < T. 

Then the following error estimates hold: 

(3.8a) IUN(t, t) u(, t)llw-s,P < Const , < 1 p << 0 I <s< l; p 
(3.8b) IUN(X, t) -u(x, t)| < Cl *6, 0 < t < T; 
(3.8c) 1UN(X, t) * - U(X, t)l < Cr *3, 1 < r < oo. 

Here, V/g is any rth-order mollifier, and the constants C 1r +luG, , t) I 
bc 

measure the local smoothness of the entropy solution in the &(e ' )-neighborhood 
of x. 

We have shown that the SV approximation is Lip+-stable and hence conver- 
gent to the exact entropy solution of (1.1). To estimate the convergence rate with 
the help of Theorem 3.3, it remains to verify the order of its Lip'-consistency. 
To this end, we note 

1. The initial data, uN(x, 0) = PNuO, are Lip'-consistent of order N N 
with the BV-initial data uo, for by (2.10), 

(3.9a) |PN UO -UO IILip' <_ E: I I < IIlUOIIBV- 
Ikl>N 

2. The SV approximation (1.4) is Lip'-consistent with the conservation 
law (I. la) of order CN logN N- 60, for 

(3.9b) tt Ax t N())|| 0) < CN- QN * UN(' t)| 

(3.9b) atNOx Lip' x O Lip' 

<_ NIIQN(, t)|1LI IlUN(. t)llBV < ConstN 0IIUN(., O)llBV- 

Here, the first inequality follows from (2.2) by ignoring the spectrally 
small discretization error (2.1); the second is an obvious use of Young's 
inequality; and the third inequality uses (2.5)o and (2.6), which show 
that the LI -norm of the viscosity kernel, QN(, t) -DN(.) - RN(, t), 
does not exceed Const * log N. 
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In summary, we find that the Lip+-stable SV approximation (1.4) is Lip'- 
consistent of order c N-0, and using Theorem 3.3, we conclude 

Theorem 3.4 (Convergence rate estimates). Consider the 27-periodic nonlin- 
ear conservation law (1.1) with Lip+ initial data. Then the SV approximation 
(1.4), (1.5)q- (1.6)q with q > 2, converges to the entropy solution of (1. 1), and 
the following error estimates hold for 1 < p, r < oo, -1/p < s < 1: 

(3.10) IuUN(., t) - u(., t)Iw-s,p <Const N-'P, 0<t0< t<T; 

(3.11) IUN(X, t) - u(x, t) I< C1 NN-, 0< to < t < T; 

(3.12) IUN(X, t) *rUN(X, t)I < Cr N- r0 , O < to < t < T. 
Remarks. 1. Theorem 3.4 requires the initial data of the SV method, UN(X, 0), 
to be Lip+-bounded independently of N. Consequently, one might need to 
preprocess the prescribed initial data uo unless they are smooth enough to 
begin with. The de la Vallee Poussin preprocessing in (2.9) will guarantee this 
requirement for arbitrary Lip+-bounded initial data uo. 

2. The error estimates (3.10), (3.11) are not uniform in time as to 1 0, 
unless the initial data are sufficiently smooth to guarantee the uniformity (in 
time) of the Lip+ bound (3.4); consult the remark following Lemma 3.2. For 
arbitrary Lip+ initial data, uo, an initial layer may be formed, after which 
the spectral viscosity becomes effective and guarantees the spectral decay of the 
discretization error indicated in (2.1)p . 

3. According to (3.11) and (3.12), the pointwise convergence rate of the SV 
solution in smooth regions of the entropy solution is of order N- 3, and by 
postprocessing the SV solution, this convergence rate can be made arbitrarily 
close to N-1 . In fact, numerical experiments reported in [14] show that by 
postprocessing the SV solution using the spectrally accurate mollifier of [3], 

l/r(x) = Vuio(x)Dn(x), n , [CNr+2], we recover the pointwise values in smooth 
regions of the entropy solution within spectral accuracy. 

4. According to (3.10) with (s, p) = (O, 1), the SV approximation has an 
L1 -convergence rate of order - N- , in agreement with [1 1, ?5]. This corre- 
sponds to the usual LI -convergence rate of order 2 for monotone difference 2 
approximations, [6, 10]. 
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